国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 
  班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
      每個班級的人數限3到5人,互動授課, 保障效果,小班授課。
  上間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開間(周末班/連續班/晚班):2018年3月18日
  實驗設備
    ◆小班教學,教學效果好
       
       ☆注重質量☆邊講邊練

       ☆合格學員免費推薦工作
       ★實驗設備請點擊這兒查看★
  質量保障

       1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
       2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
       3、培訓合格學員可享受免費推薦就業機會。☆合格學員免費頒發相關工程師等資格證書,提升職業資質。專注高端技術培訓15年,端海學員的能力得到大家的認同,受到用人單位的廣泛贊譽,端海的證書受到廣泛認可。

課程大綱
 
  • Day 01
    =====
    Overview of Big Data Business Intelligence for Criminal Intelligence Analysis
  • Case Studies from Law Enforcement - Predictive Policing
    Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
    Emerging technology solutions such as gunshot sensors, surveillance video and social media
    Using Big Data technology to mitigate information overload
    Interfacing Big Data with Legacy data
    Basic understanding of enabling technologies in predictive analytics
    Data Integration & Dashboard visualization
    Fraud management
    Business Rules and Fraud detection
    Threat detection and profiling
    Cost benefit analysis for Big Data implementation
    Introduction to Big Data
  • Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
    MPP (Massively Parallel Processing) architecture
    Data Warehouses – static schema, slowly evolving dataset
    MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
    Hadoop Based Solutions – no conditions on structure of dataset.
    Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
    Apache Spark for stream processing
    Batch- suited for analytical/non-interactive
    Volume : CEP streaming data
    Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
    Less production ready – Storm/S4
    NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
    NoSQL solutions
  • KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
    KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
    KV Store (Hierarchical) - GT.m, Cache
    KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
    KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
    Tuple Store - Gigaspaces, Coord, Apache River
    Object Database - ZopeDB, DB40, Shoal
    Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
    Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
    Varieties of Data: Introduction to Data Cleaning issues in Big Data
  • RDBMS – static structure/schema, does not promote agile, exploratory environment.
    NoSQL – semi structured, enough structure to store data without exact schema before storing data
    Data cleaning issues
    Hadoop
  • When to select Hadoop?
    STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
    SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
    Warehousing data = HUGE effort and static even after implementation
    For variety & volume of data, crunched on commodity hardware – HADOOP
    Commodity H/W needed to create a Hadoop Cluster
    Introduction to Map Reduce /HDFS
  • MapReduce – distribute computing over multiple servers
    HDFS – make data available locally for the computing process (with redundancy)
    Data – can be unstructured/schema-less (unlike RDBMS)
    Developer responsibility to make sense of data
    Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
    =====
    Day 02
    =====
    Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?
  • Hadoop vs. Other NoSQL solutions
    For interactive, random access to data
    Hbase (column oriented database) on top of Hadoop
    Random access to data but restrictions imposed (max 1 PB)
    Not good for ad-hoc analytics, good for logging, counting, time-series
    Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
    Flume – Stream data (e.g. log data) into HDFS
    Big Data Management System
  • Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
    Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
    Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
    In Cloud : Whirr
    Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence
  • Introduction to Machine Learning
    Learning classification techniques
    Bayesian Prediction -- preparing a training file
    Support Vector Machine
    KNN p-Tree Algebra & vertical mining
    Neural Networks
    Big Data large variable problem -- Random forest (RF)
    Big Data Automation problem – Multi-model ensemble RF
    Automation through Soft10-M
    Text analytic tool-Treeminer
    Agile learning
    Agent based learning
    Distributed learning
    Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
    Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis
  • Technology and the investigative process
    Insight analytic
    Visualization analytics
    Structured predictive analytics
    Unstructured predictive analytics
    Threat/fraudstar/vendor profiling
    Recommendation Engine
    Pattern detection
    Rule/Scenario discovery – failure, fraud, optimization
    Root cause discovery
    Sentiment analysis
    CRM analytics
    Network analytics
    Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
    Technology assisted review
    Fraud analytics
    Real Time Analytic
    =====
    Day 03
    =====
    Real Time and Scalable Analytics Over Hadoop
  • Why common analytic algorithms fail in Hadoop/HDFS
    Apache Hama- for Bulk Synchronous distributed computing
    Apache SPARK- for cluster computing and real time analytic
    CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
    KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
    Tools for eDiscovery and Forensics
  • eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
    Predictive coding and Technology Assisted Review (TAR)
    Live demo of vMiner for understanding how TAR enables faster discovery
    Faster indexing through HDFS – Velocity of data
    NLP (Natural Language processing) – open source products and techniques
    eDiscovery in foreign languages -- technology for foreign language processing
    Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification
  • Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
    Network infrastructure / Large datapipe / Response ETL for real time analytic
    Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
    Gathering disparate data for Criminal Intelligence Analysis
  • Using IoT (Internet of Things) as sensors for capturing data
    Using Satellite Imagery for Domestic Surveillance
    Using surveillance and image data for criminal identification
    Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
    Combining automated data retrieval with data obtained from informants, interrogation, and research
    Forecasting criminal activity
    =====
    Day 04
    =====
    Fraud prevention BI from Big Data in Fraud Analytics
  • Basic classification of Fraud Analytics -- rules-based vs predictive analytics
    Supervised vs unsupervised Machine learning for Fraud pattern detection
    Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
    Social Media Analytics -- Intelligence gathering and analysis
  • How Social Media is used by criminals to organize, recruit and plan
    Big Data ETL API for extracting social media data
    Text, image, meta data and video
    Sentiment analysis from social media feed
    Contextual and non-contextual filtering of social media feed
    Social Media Dashboard to integrate diverse social media
    Automated profiling of social media profile
    Live demo of each analytic will be given through Treeminer Tool
    Big Data Analytics in image processing and video feeds
  • Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
    LTFS (Linear Tape File System) and LTO (Linear Tape Open)
    GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
    Fundamentals of image analytics
    Object recognition
    Image segmentation
    Motion tracking
    3-D image reconstruction
    Biometrics, DNA and Next Generation Identification Programs
  • Beyond fingerprinting and facial recognition
    Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
    Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
    Big Data Dashboard for quick accessibility of diverse data and display :
  • Integration of existing application platform with Big Data Dashboard
    Big Data management
    Case Study of Big Data Dashboard: Tableau and Pentaho
    Use Big Data app to push location based services in Govt.
    Tracking system and management
    =====
    Day 05
    =====
    How to justify Big Data BI implementation within an organization:
  • Defining the ROI (Return on Investment) for implementing Big Data
    Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
    Revenue gain from lower database licensing cost
    Revenue gain from location based services
    Cost savings from fraud prevention
    An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
    Step by Step procedure for replacing a legacy data system with a Big Data System
  • Big Data Migration Roadmap
    What critical information is needed before architecting a Big Data system?
    What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
    How to estimate data growth
    Case studies
    Review of Big Data Vendors and review of their products.
  • Accenture
    APTEAN (Formerly CDC Software)
    Cisco Systems
    Cloudera
    Dell
    EMC
    GoodData Corporation
    Guavus
    Hitachi Data Systems
    Hortonworks
    HP
    IBM
    Informatica
    Intel
    Jaspersoft
    Microsoft
    MongoDB (Formerly 10Gen)
    MU Sigma
    Netapp
    Opera Solutions
    Oracle
    Pentaho
    Platfora
    Qliktech
    Quantum
    Rackspace
    Revolution Analytics
    Salesforce
    SAP
    SAS Institute
    Sisense
    Software AG/Terracotta
    Soft10 Automation
    Splunk
    Sqrrl
    Supermicro
    Tableau Software
    Teradata
    Think Big Analytics
    Tidemark Systems
    Treeminer
    VMware (Part of EMC)
    Q/A session
 

-

 

  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
欧美激情国产高清| 最新国产成人av网站网址麻豆| 久久九九久精品国产免费直播 | 久久激情网站| 亚洲小少妇裸体bbw| 狠狠色狠狠色综合日日五| 国产精品久久一卡二卡| 欧美久久电影| 欧美激情女人20p| 麻豆成人精品| 久久五月激情| 久久亚洲综合色| 亚洲欧美日韩精品在线| 亚洲精品欧美日韩专区| 国产欧美综合一区二区三区| 欧美黑人一区二区三区| 欧美综合二区| 亚洲一级在线观看| 亚洲乱码精品一二三四区日韩在线 | 欧美性猛交99久久久久99按摩 | 欧美成人高清视频| 久久av资源网| 亚洲综合999| 夜夜嗨av一区二区三区免费区| 激情欧美一区二区三区在线观看| 国产精品国产三级国产普通话蜜臀| 欧美1区2区| 久久综合成人精品亚洲另类欧美| 午夜精品久久久久久久99热浪潮| 在线一区视频| 99在线精品视频| 日韩亚洲综合在线| 亚洲人体一区| 亚洲精品一级| 亚洲精品美女久久7777777| 国产乱子伦一区二区三区国色天香| 欧美四级电影网站| 欧美视频一区二区三区在线观看| 欧美乱妇高清无乱码| 欧美大秀在线观看| 欧美精品久久久久a| 久久综合九九| 亚洲一区在线直播| 亚洲欧美综合国产精品一区| 久久国产手机看片| 久久爱另类一区二区小说| 亚洲欧洲一区二区在线播放| 韩国三级在线一区| 国产在线观看精品一区二区三区| 国产精品毛片大码女人| 欧美视频在线观看免费网址| 欧美精品网站| 国产精品高潮粉嫩av| 国产精品日韩在线| 国产三级精品三级| 在线免费不卡视频| 亚洲毛片播放| 先锋影音一区二区三区| 日韩亚洲成人av在线| 亚洲欧美日韩一区二区三区在线观看 | 国产精品亚洲成人| 国产毛片精品国产一区二区三区| 国产精品一区二区三区四区 | 亚洲精品1234| 狠狠久久婷婷| 亚洲第一天堂无码专区| 99在线热播精品免费99热| 亚洲一区二区视频在线| 久久精品国内一区二区三区| 欧美成人一区二区| 国产精品女主播在线观看 | 欧美一区三区二区在线观看| 毛片av中文字幕一区二区| 欧美日韩免费看| 国产亚洲免费的视频看| 亚洲人成亚洲人成在线观看| 亚洲在线视频网站| 免费成人av在线看| 国产精品欧美一区喷水 | 牛牛影视久久网| 国产精品国产三级国产专区53 | 亚洲午夜电影网| 久久影院午夜片一区| 国产精品免费在线 | 美女精品在线| 国产欧美婷婷中文| 夜夜嗨av一区二区三区中文字幕| 久久九九免费视频| 国产精品视频免费一区| 亚洲丶国产丶欧美一区二区三区| 亚洲欧美日韩国产中文在线| 欧美精品在线观看91| 亚洲第一黄网| 久久久www成人免费无遮挡大片| 欧美午夜精品一区二区三区| 亚洲国产精品www| 久久久久久电影| 国产欧美不卡| 亚洲欧洲99久久| 国产精品久久久久久久久搜平片 | 亚洲欧美日韩视频一区| 欧美日韩p片| 亚洲精品乱码久久久久久按摩观 | 国产精品一国产精品k频道56| 亚洲美女91| 欧美成人精品三级在线观看| 在线观看日韩av电影| 久久国产精品亚洲va麻豆| 国产日韩亚洲| 久久精品一区四区| 韩国成人理伦片免费播放| 欧美专区18| 黑人巨大精品欧美一区二区小视频| 欧美一区二区三区四区视频| 国产精品视频网| 欧美一区二区精品在线| 国产日韩精品综合网站| 久久精品99久久香蕉国产色戒| 国产在线视频不卡二| 久久精品国产欧美亚洲人人爽| 国产色婷婷国产综合在线理论片a| 午夜精品久久久久| 国产精品一区二区黑丝| 欧美在线网站| 国产日韩在线视频| 久久av最新网址| 亚洲国产小视频| 欧美午夜国产| 欧美中文字幕在线观看| 亚洲第一视频网站| 欧美日韩三级电影在线| 性色av一区二区三区| 激情久久久久久久| 久久久噜噜噜久久狠狠50岁| 国产日韩欧美日韩大片| 久久久噜噜噜久久人人看| 亚洲经典自拍| 国产精品视频999| 久久久久成人精品| 亚洲欧洲综合另类在线| 国产精品剧情在线亚洲| 久久精品二区三区| 国产精品一二三四| 欧美大片18| 99精品视频免费观看| 国产精一区二区三区| 美女视频一区免费观看| 亚洲午夜羞羞片| 亚洲成色777777在线观看影院| 欧美亚男人的天堂| 久热综合在线亚洲精品| 亚洲一区二区三区免费在线观看 | 欧美日本韩国一区二区三区| 亚洲一区国产| 亚洲黄色av一区| 欧美日韩国产成人在线免费| 一本久久a久久免费精品不卡| 欧美日韩国产二区| 亚洲在线观看| 亚洲每日在线| 免费观看国产成人| 91久久夜色精品国产九色| 国产精品国产三级国产aⅴ浪潮| 亚洲欧美精品在线观看| 亚洲区在线播放| 韩国v欧美v日本v亚洲v| 国产精品久久久久久久久免费樱桃| 欧美va亚洲va国产综合| 久久成人综合视频| 亚洲一区久久久| 一本到高清视频免费精品| 在线看片成人| 经典三级久久| 韩国av一区二区三区四区| 国产美女精品免费电影| 国产精品大全| 欧美午夜精品久久久久久人妖 | 欧美日韩视频在线第一区| 欧美 日韩 国产 一区| 欧美在线一二三| 久久精品国产一区二区三区免费看| 亚洲欧美日韩国产成人精品影院| 91久久精品日日躁夜夜躁欧美 | 亚洲欧美另类国产| 亚洲一区精品在线| 欧美亚洲自偷自偷| 麻豆91精品| 欧美日韩在线观看一区二区| 国产精品任我爽爆在线播放| 国产午夜精品美女视频明星a级 | 亚洲尤物视频在线| 欧美专区福利在线| 免费中文日韩| 国产精品高潮在线| 红桃视频欧美| 亚洲网站在线播放| 久久久天天操| 国产精品99免视看9| 国产真实久久| 一本色道久久综合亚洲精品小说|