曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Artificial Neural Networks, Machine Learning, Deep Thinking培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

DAY 1 - ARTIFICIAL NEURAL NETWORKS

Introduction and ANN Structure.

Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.

Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.

Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.

Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.

Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.

General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.

Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications

A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING

The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING

This will be taught in relation to the topics covered on Day 1 and Day 2

Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
久久99热只有频精品8| 成人无码精品1区2区3区免费看| 国产午夜福利精品久久2021 | 99re热视频这里只精品| 精品国产v无码大片在线观看| 精品亚洲一区二区三区在线观看| 国产成人精品怡红院| 久久91综合国产91久久精品| 四虎精品久久久久影院| 亚洲国产精品一区二区久| 国模精品一区二区三区| 国产精品综合一区二区| 精品国精品国产自在久国产应用| 亚洲精品无码永久中文字幕| 国产亚洲福利精品一区二区| 国产精品午夜剧场| 久久99精品久久久久久久野外| 国产成人精品一区二三区在线观看| 国产精品久久自在自线观看| 久久这里只有精品66| 久久精品国产福利国产琪琪| 国产精品亚洲综合一区在线观看 | 国产精品亚洲色图| 911精品国产自产在线观看| 色欲久久久天天天综合网精品| 三上悠亚日韩精品一区在线| 日韩精品无码Av一区二区| 久久无码av亚洲精品色午夜| 五月天婷婷精品视频| 亚洲人成亚洲精品| 国产精品人人爽人人做我的可爱 | 国产精品无码无片在线观看3D| 久久精品人妻中文系列| 久久一区二区精品| 精品国产免费一区二区三区香蕉 | 久久国产精品一国产精品| 国内精品视频九九九九| 国产成人精品免高潮在线观看| 国产亚洲精品美女久久久久| 午夜精品视频任你躁| 国产精品视频在线观看|