国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Understanding Deep Neural Networks培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron

Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines

Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks

Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks

Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial


 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲人体一区| 欧美日韩国产小视频| 国产精品成人国产乱一区| 精品不卡在线| 久久精品亚洲精品| 国产精品中文字幕欧美| 亚洲欧美自拍偷拍| 国产精品久久久999| 亚洲视频成人| 欧美三区免费完整视频在线观看| 亚洲国产免费看| 欧美好吊妞视频| 亚洲精品一区二区三区在线观看| 欧美成人一区二区三区在线观看 | 国产一区二区三区av电影| 亚洲影院色无极综合| 国产精品豆花视频| 亚洲欧美综合| 国产婷婷精品| 久久婷婷一区| 亚洲黄一区二区三区| 欧美黄色影院| 一本色道久久综合亚洲精品婷婷| 欧美日韩中文| 午夜影院日韩| 欧美人与禽猛交乱配| 国产乱码精品一区二区三区五月婷| 中文在线资源观看网站视频免费不卡| 欧美精品一区二区三区四区 | 亚洲深夜福利在线| 国产美女在线精品免费观看| 日韩亚洲综合在线| 欧美日韩国产精品自在自线| 一区二区三区视频在线播放| 国产精品乱码妇女bbbb| 欧美中文在线免费| 亚洲国产成人在线| 欧美日韩在线另类| 午夜亚洲激情| 亚洲激情在线视频| 国产精品乱码| 久久精品国产精品亚洲精品| 最新69国产成人精品视频免费| 欧美日韩亚洲一区三区| 欧美一区二区三区免费视频| 亚洲电影在线看| 国产精品极品美女粉嫩高清在线| 久久久女女女女999久久| 一本色道久久综合狠狠躁篇怎么玩| 国产欧美日韩精品在线| 欧美激情精品久久久久久蜜臀 | 欧美日韩另类丝袜其他| 欧美一区91| 夜夜嗨av一区二区三区中文字幕 | 国产欧美成人| 久久av在线| 亚洲精品一区在线观看| 国产精品人人做人人爽 | 欧美一区二区三区成人| 亚洲精品中文字| 国产亚洲成精品久久| 欧美人与性动交cc0o| 久久精品国产亚洲aⅴ| 一区二区三欧美| 亚洲欧洲日韩女同| 国产在线成人| 国产精品久久久久久久7电影 | 亚洲激情网址| 美女啪啪无遮挡免费久久网站| 在线精品观看| 国产欧美精品xxxx另类| 欧美理论在线播放| 老司机免费视频一区二区| 亚洲欧美日韩精品一区二区| 亚洲日本视频| 在线观看成人av| 国产一区三区三区| 国产麻豆精品在线观看| 欧美视频一区二区三区| 欧美激情国产日韩精品一区18| 久久人人爽人人| 欧美尤物一区| 久久av一区二区三区亚洲| 亚洲婷婷综合色高清在线| 亚洲精品日日夜夜| 亚洲国产欧美一区二区三区久久 | 亚洲精品国产系列| 极品日韩久久| 国产一区二区| 国产在线高清精品| 国语自产精品视频在线看| 国产日韩欧美黄色| 国产真实精品久久二三区| 亚洲电影一级黄| 亚洲大片精品永久免费| 在线成人h网| 一区二区视频免费在线观看 | 国内精品视频在线播放| 国产一区二区成人| 国产亚洲精品美女| 好男人免费精品视频| 精品999成人| 亚洲国产女人aaa毛片在线| 亚洲黄色在线观看| 99精品99久久久久久宅男| 一区二区三区国产盗摄| 亚洲在线中文字幕| 欧美在线网站| 久久婷婷国产综合尤物精品| 久久久www成人免费无遮挡大片| 久久九九免费视频| 欧美成人国产一区二区| 欧美日韩国产小视频| 欧美视频中文字幕在线| 国产精品自在欧美一区| 红桃视频成人| 亚洲人成在线观看| 亚洲一区影音先锋| 久久久亚洲影院你懂的| 欧美成人一区二区| 欧美视频在线观看视频极品| 国产欧美日韩在线播放| 伊人一区二区三区久久精品| 亚洲精选久久| 性做久久久久久久久| 免费在线国产精品| 国产精品vvv| 今天的高清视频免费播放成人| 亚洲激情一区二区| 一区二区三区精品视频| 久久精品91久久久久久再现| 欧美激情精品久久久久久大尺度 | 裸体歌舞表演一区二区| 欧美午夜精品久久久久免费视| 国产一区二区电影在线观看 | 国产欧美精品在线观看| 91久久视频| 欧美一区二区三区视频在线| 欧美freesex8一10精品| 国产精品色一区二区三区| 亚洲国产精品一区二区第一页 | 麻豆成人综合网| 国产精品高精视频免费| 在线观看的日韩av| 香蕉av福利精品导航| 欧美日韩成人一区二区| 一区二区亚洲| 欧美伊人久久久久久久久影院| 欧美看片网站| 在线观看一区视频| 亚洲欧美日韩中文播放| 欧美区视频在线观看| 精品999在线播放| 午夜精品久久久久久久男人的天堂| 欧美成人综合在线| 精品999日本| 欧美中文字幕在线观看| 国产精品欧美久久| 一区二区三区毛片| 欧美精品久久一区二区| 精品动漫av| 久久久久国产精品厨房| 国产欧美一级| 亚洲欧美在线一区二区| 国产精品高清网站| 一区二区三欧美| 欧美日韩亚洲一区二区三区在线观看 | 亚洲精品美女久久7777777| 久久久久久97三级| 国产亚洲成人一区| 午夜日本精品| 国产欧美精品在线观看| 亚洲视频一区在线观看| 欧美三级日韩三级国产三级| 99av国产精品欲麻豆| 欧美精品一区二区三| 亚洲精品视频免费观看| 欧美电影在线观看完整版| 最新中文字幕一区二区三区| 蜜桃精品一区二区三区| 亚洲第一天堂无码专区| 久久天天躁狠狠躁夜夜爽蜜月| 国产在线一区二区三区四区| 久久午夜视频| 亚洲国产毛片完整版| 欧美黑人一区二区三区| 一区二区三区波多野结衣在线观看| 欧美日韩大片一区二区三区| 日韩亚洲国产精品| 国产精品第一页第二页第三页| 亚洲一区二区三区在线看| 国产精品亚发布| 久久精品一区二区三区四区| 尤物九九久久国产精品的分类| 久久亚洲精品网站| 亚洲欧洲精品一区二区精品久久久| 牛牛影视久久网| 一区二区日韩伦理片| 国产欧美一区二区精品忘忧草| 久久精品国产99精品国产亚洲性色 |