国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Understanding Deep Neural Networks培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron

Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines

Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks

Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks

Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
久久尤物电影视频在线观看| 国产一区二区欧美日韩| 亚洲欧美日韩成人高清在线一区| 国产真实久久| 国产精品黄视频| 欧美精品一区三区在线观看| 久久免费视频网| 午夜精品视频在线观看| 一区二区国产日产| 亚洲精品日产精品乱码不卡| …久久精品99久久香蕉国产| 国产伦精品一区二区三区高清| 欧美日韩亚洲一区二区三区| 欧美久久久久久久久久| 欧美国产一区视频在线观看| 久久av一区二区三区亚洲| 亚洲一区二区影院| 亚洲欧美精品中文字幕在线| 亚洲一区二区三区四区视频| 亚洲视频网站在线观看| 妖精成人www高清在线观看| 亚洲三级免费观看| 亚洲欧洲日产国码二区| 亚洲精品国产系列| 夜夜狂射影院欧美极品| 亚洲一区二区三区高清| 99国产精品国产精品久久| 日韩亚洲一区在线播放| 亚洲精品在线看| 一二三四社区欧美黄| 这里只有视频精品| 国产精品99久久久久久久女警| 夜夜嗨av色一区二区不卡| 一区二区三区产品免费精品久久75| 亚洲精品午夜精品| 亚洲视频一区二区在线观看| 亚洲欧美日韩国产综合在线 | 在线亚洲观看| 亚洲一区二区三区色| 亚洲欧美在线aaa| 欧美伊人久久| 欧美高清一区| 国产精品久久久久久久久久妞妞| 国产精品一二三四区| 狠狠色伊人亚洲综合成人| 亚洲动漫精品| 一级日韩一区在线观看| 久久国产精品久久精品国产| 你懂的成人av| 国产精品久久精品日日| 一区二区亚洲| 亚洲视屏一区| 久久影院亚洲| 国产麻豆日韩| 最新日韩欧美| 欧美综合激情网| 欧美日本久久| 激情综合中文娱乐网| 中日韩美女免费视频网址在线观看| 亚洲综合色在线| 狼人天天伊人久久| 国产精品v欧美精品∨日韩| 国模精品一区二区三区色天香 | 麻豆精品网站| 欧美天堂亚洲电影院在线播放| 国产主播精品| 亚洲欧美日韩一区在线| 欧美高清在线视频| 国产欧美精品va在线观看| 在线国产精品一区| 亚洲制服少妇| 欧美日韩国产麻豆| 伊人久久亚洲热| 欧美一区二区三区久久精品茉莉花 | 亚洲精品国产精品久久清纯直播 | 亚洲特级毛片| 欧美**人妖| 精品不卡一区| 久久国产一区| 国产色视频一区| 亚洲一区二区日本| 欧美久久99| 亚洲精品国精品久久99热一| 久久久www| 国产中文一区| 羞羞视频在线观看欧美| 国产精品www| 亚洲视频999| 欧美日韩国产不卡| 亚洲免费精品| 欧美成人一品| 亚洲国产精品久久久久秋霞影院| 久久综合中文色婷婷| 国产综合色在线视频区| 欧美在线播放| 合欧美一区二区三区| 久久久国产成人精品| 国产亚洲欧美日韩在线一区 | 国产精品美女久久久久av超清 | 欧美极品一区| 日韩视频在线你懂得| 欧美人成在线视频| 在线一区二区三区做爰视频网站| 欧美精品色网| 亚洲一区在线观看免费观看电影高清 | 亚洲精品网站在线播放gif| 欧美国产第二页| 亚洲精品视频在线播放| 欧美日韩不卡在线| 亚洲尤物在线视频观看| 国产在线高清精品| 免费日韩av片| 亚洲视频观看| 国产亚洲精品激情久久| 久久久一区二区三区| 日韩一级大片在线| 国产情侣一区| 欧美激情中文不卡| 欧美一区2区三区4区公司二百| 精品va天堂亚洲国产| 欧美特黄视频| 久久免费少妇高潮久久精品99| 亚洲精品欧美日韩专区| 国产精品亚洲激情| 欧美jizz19性欧美| 亚洲欧美激情诱惑| 亚洲电影免费观看高清完整版在线| 欧美日韩视频一区二区| 欧美伊人精品成人久久综合97| 91久久精品美女高潮| 国产乱码精品| 欧美精品一区二区三区很污很色的| 性高湖久久久久久久久| 亚洲三级视频在线观看| 国产日韩亚洲欧美| 欧美日韩国产精品一区| 久久久久久香蕉网| 亚洲一区在线免费| 亚洲免费精品| 在线日韩视频| 国产日韩一区欧美| 国产精品久久久久国产精品日日| 蜜臀av在线播放一区二区三区| 亚洲一区二区三区四区在线观看| 亚洲电影在线看| 国产一区二区日韩| 国产精品综合视频| 欧美视频二区| 欧美激情网友自拍| 麻豆精品传媒视频| 欧美在线亚洲综合一区| 亚洲一区影院| 一区二区三区国产盗摄| 亚洲国产精品99久久久久久久久| 国产精品亚洲综合久久| 欧美区一区二| 欧美精品国产精品日韩精品| 免费观看30秒视频久久| 久久综合亚州| 欧美xxxx在线观看| 欧美成人免费在线视频| 欧美福利一区二区三区| 欧美不卡视频| 欧美成黄导航| 欧美激情一区二区三区在线| 你懂的国产精品| 欧美高清在线播放| 欧美精品videossex性护士| 免费日韩av片| 欧美大片一区二区| 欧美金8天国| 欧美日韩国产精品 | 欧美日韩国产综合久久| 欧美人妖另类| 欧美日韩一区二区精品| 欧美性猛交视频| 国产精品自在线| 国内揄拍国内精品久久| 狠狠综合久久av一区二区老牛| 黄色免费成人| 91久久精品一区二区三区| 日韩视频在线观看免费| 在线视频欧美日韩| 午夜精品电影| 麻豆成人小视频| 欧美久久久久久| 国产精品美女久久| 韩国成人精品a∨在线观看| 亚洲高清中文字幕| 亚洲最新视频在线播放| 亚洲综合电影一区二区三区| 久久久久久久波多野高潮日日 | 亚洲国产99| 宅男66日本亚洲欧美视频| 午夜精品久久久久久99热| 久久久久九九九九| 欧美三级第一页| 国精产品99永久一区一区| 亚洲裸体视频| 久久久亚洲欧洲日产国码αv |