国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

    Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
欧美日本簧片| 亚洲日本一区二区三区| 欧美.www| 亚洲欧美日韩国产| 日韩亚洲精品视频| 亚洲国产小视频在线观看| 国产欧美婷婷中文| 欧美午夜国产| 欧美日韩爆操| 欧美成人精品激情在线观看| 欧美中文字幕在线播放| 亚洲深夜av| 一区二区三区精品国产| 亚洲日本无吗高清不卡| …久久精品99久久香蕉国产 | 国产精品一区在线播放| 欧美精品一线| 欧美二区在线观看| 农村妇女精品| 欧美成人精品三级在线观看| 欧美xx69| 欧美精品激情blacked18| 欧美国产精品人人做人人爱| 美女图片一区二区| 欧美mv日韩mv国产网站| 免费短视频成人日韩| 久久综合亚洲社区| 欧美大秀在线观看| 欧美日韩国产成人在线免费 | 亚洲精品欧美一区二区三区| 亚洲国产91精品在线观看| 在线观看欧美亚洲| 亚洲黄色天堂| 夜夜夜久久久| 亚洲一区二区成人| 欧美在线日韩在线| 另类专区欧美制服同性| 欧美国产日韩一区二区在线观看 | 亚洲欧洲综合另类| 亚洲欧洲三级| 久久久99国产精品免费| 久久久99爱| 欧美成人精品一区二区三区| 欧美日韩天天操| 国产精品视频一二| 伊人久久噜噜噜躁狠狠躁| 亚洲人屁股眼子交8| 亚洲午夜久久久| 久久久久久久久一区二区| 美国十次成人| 国产精品播放| 尤物在线观看一区| 一区二区三区视频在线播放| 欧美一区二区三区精品| 欧美成人黄色小视频| 国产精品久久久99| 在线日本欧美| 亚洲欧美日韩一区| 欧美成人嫩草网站| 国产日韩欧美三区| 一本色道久久综合一区 | 午夜久久一区| 欧美精品www| 一区二区在线观看视频| 亚洲一区观看| 欧美精品www| 黄色日韩在线| 欧美亚洲自偷自偷| 欧美午夜久久久| 亚洲国产精品成人| 久久精品国产综合| 国产精品久久一区主播| 亚洲日韩第九十九页| 久久久99爱| 国产日产欧产精品推荐色| 中文国产成人精品久久一| 看片网站欧美日韩| 国产综合自拍| 欧美影院久久久| 国产精品乱人伦中文| 一区二区久久| 欧美日韩高清区| 亚洲黄色天堂| 免费成年人欧美视频| 国产一区亚洲| 欧美在线视频免费播放| 国产精品乱人伦中文| 亚洲一区二区久久| 国产精品高清网站| 亚洲欧美激情四射在线日 | 国产精品国产三级国产a| 99精品国产99久久久久久福利| 毛片一区二区| 亚洲国产免费看| 牛牛精品成人免费视频| 亚洲国产一区二区在线| 欧美风情在线| 99精品福利视频| 国产精品99免视看9| 亚洲免费在线精品一区| 国产精品亚洲第一区在线暖暖韩国| 亚洲天堂成人| 国产乱码精品| 久久久久久香蕉网| 亚洲国产欧美国产综合一区| 欧美二区在线| 亚洲天堂久久| 亚洲蜜桃精久久久久久久| 欧美成人免费视频| aa日韩免费精品视频一| 国产精品啊啊啊| 香蕉免费一区二区三区在线观看| 国产综合欧美在线看| 久久久人成影片一区二区三区观看| 在线观看成人av电影| 欧美成人免费网| 亚洲一区二区三区乱码aⅴ蜜桃女| 国产欧美在线观看一区| 久久亚洲国产精品一区二区| 亚洲人体偷拍| 国产日韩精品一区二区浪潮av| 久久久久五月天| 一二三区精品| 国产一区二区日韩精品| 欧美精品一区在线观看| 香蕉av777xxx色综合一区| 在线亚洲成人| 校园春色国产精品| 国内精品美女av在线播放| 欧美国产日韩在线观看| 亚洲一区二区三区在线播放| 一区二区三区在线高清| 欧美日韩另类视频| 久久久久www| 亚洲天堂av高清| 亚洲福利在线看| 国产噜噜噜噜噜久久久久久久久| 久久亚洲欧美| 午夜一区二区三区不卡视频| 亚洲国产一区二区三区高清| 国产精品一区二区在线观看网站 | 国产一区白浆| 欧美调教视频| 免费在线观看精品| 欧美专区日韩专区| 国产精品99久久久久久宅男| 亚洲人成欧美中文字幕| 国产一区二区在线免费观看| 国产精品成人久久久久| 国产精品久久久久国产精品日日| 农夫在线精品视频免费观看| 久久九九国产精品| 欧美一级久久久| 亚洲摸下面视频| 亚洲视频电影在线| 日韩亚洲不卡在线| 91久久综合亚洲鲁鲁五月天| 精东粉嫩av免费一区二区三区| 国产伦精品一区二区三区视频孕妇| 欧美久色视频| 欧美日产国产成人免费图片| 欧美黄色小视频| 美女亚洲精品| 欧美aⅴ一区二区三区视频| 久久久天天操| 久久久综合视频| 久久久久久穴| 久久综合久久综合九色| 老司机午夜精品视频在线观看| 久久蜜臀精品av| 六月丁香综合| 欧美激情精品久久久久久大尺度| 欧美91视频| 欧美日韩国产精品一区二区亚洲| 欧美二区在线看| 欧美日韩综合视频| 国产精品成人一区二区网站软件| 欧美午夜精品久久久| 国产精品视频免费观看| 国产欧美日韩视频在线观看| 国产夜色精品一区二区av| 国产在线高清精品| 亚洲国产裸拍裸体视频在线观看乱了中文 | 国产精品99久久久久久久vr| 一区二区三区日韩欧美| 亚洲欧美日韩国产一区| 久久狠狠婷婷| 欧美福利电影在线观看| 欧美日韩直播| 国产视频精品免费播放| 国产真实久久| 亚洲精品在线观| 午夜精品久久久久久久男人的天堂 | 国产精品国产三级国产aⅴ9色| 国产精品尤物| 亚洲经典视频在线观看| 9久re热视频在线精品| 欧美一区二区三区在线| 欧美99久久| 国产精品视屏|