課程目錄:Introduction to R with Time Series Analysis培訓
4401 人關注
(78637/99817)
課程大綱:

         Introduction to R with Time Series Analysis培訓

 

 

 

Introduction and preliminaries
Making R more friendly, R and available GUIs
Rstudio
Related software and documentation
R and statistics
Using R interactively
An introductory session
Getting help with functions and features
R commands, case sensitivity, etc.
Recall and correction of previous commands
Executing commands from or diverting output to a file
Data permanency and removing objects
Simple manipulations; numbers and vectors
Vectors and assignment
Vector arithmetic
Generating regular sequences
Logical vectors
Missing values
Character vectors
Index vectors; selecting and modifying subsets of a data set
Other types of objects
Objects, their modes and attributes
Intrinsic attributes: mode and length
Changing the length of an object
Getting and setting attributes
The class of an object
Arrays and matrices
Arrays
Array indexing. Subsections of an array
Index matrices
The array() function
The outer product of two arrays
Generalized transpose of an array
Matrix facilities
Matrix multiplication
Linear equations and inversion
Eigenvalues and eigenvectors
Singular value decomposition and determinants
Least squares fitting and the QR decomposition
Forming partitioned matrices, cbind() and rbind()
The concatenation function, (), with arrays
Frequency tables from factors
Lists and data frames
Lists
Constructing and modifying lists
Concatenating lists
Data frames
Making data frames
attach() and detach()
Working with data frames
Attaching arbitrary lists
Managing the search path
Data manipulation
Selecting, subsetting observations and variables
Filtering, grouping
Recoding, transformations
Aggregation, combining data sets
Character manipulation, stringr package
Reading data
Txt files
CSV files
XLS, XLSX files
SPSS, SAS, Stata,… and other formats data
Exporting data to txt, csv and other formats
Accessing data from databases using SQL language
Probability distributions
R as a set of statistical tables
Examining the distribution of a set of data
One- and two-sample tests
Grouping, loops and conditional execution
Grouped expressions
Control statements
Conditional execution: if statements
Repetitive execution: for loops, repeat and while
Writing your own functions
Simple examples
Defining new binary operators
Named arguments and defaults
The '...' argument
Assignments within functions
More advanced examples
Efficiency factors in block designs
Dropping all names in a printed array
Recursive numerical integration
Scope
Customizing the environment
Classes, generic functions and object orientation
Graphical procedures
High-level plotting commands
The plot() function
Displaying multivariate data
Display graphics
Arguments to high-level plotting functions
Basic visualisation graphs
Multivariate relations with lattice and ggplot package
Using graphics parameters
Graphics parameters list
Time series Forecasting
Seasonal adjustment
Moving average
Exponential smoothing
Extrapolation
Linear prediction
Trend estimation
Stationarity and ARIMA modelling
Econometric methods (casual methods)
Regression analysis
Multiple linear regression
Multiple non-linear regression
Regression validation
Forecasting from regression

99re热这里只有精品18| 国产精品女人呻吟在线观看| 国产精品福利自产拍在线观看| 精品无码成人久久久久久| 亚洲AV永久青草无码精品| 国产产在线精品亚洲AAVV| 久久精品免费一区二区| 久久99国产精品二区不卡| 精品无码中出一区二区| 国产99久久精品一区二区| 国产成人久久精品激情| 国产精品热久久无码av| 精品哟哟哟国产在线观看不卡| 56prom在线精品国产| 三上悠亚日韩精品| 国产在线观看精品一区二区三区91| 精品国产99久久久久久麻豆| 国产suv精品一区二区33| HEYZO无码综合国产精品| 精品久久久久久无码中文野结衣 | 99精品在线免费观看| 久久中文精品无码中文字幕| 国产成人久久精品二三区麻豆| 91精品国产手机| 久久亚洲AV午夜福利精品一区 | 亚洲国产精品一区二区久久hs| 国产99视频精品免费视频76| 精品国产av一二三四区| 国产精品99久久久久久宅男小说| 99久久精品免费视频| 久久亚洲国产精品一区二区| 中文字幕精品1在线| 亚洲国产精品无码久久青草 | 精品国产_亚洲人成在线高清| 国产精品天干天干在线综合| 精品人妻人人做人人爽夜夜爽 | 自拍偷自拍亚洲精品第1页| 国产精品哟女在线观看| www.久久精品| 国产亚洲精品2021自在线| 国产精品免费_区二区三区观看|