国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Introduction Deep Learning and Neural Network for Engineers培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

         Introduction Deep Learning and Neural Network for Engineers培訓(xùn)

 

 

 

 

The course is divided into three separate days, the third being optional.

Day 1 - Machine Learning & Deep Learning: theoretical concepts
1. Introduction IA, Machine Learning & Deep Learning

- History, basic concepts and usual applications of artificial intelligence far

Of the fantasies carried by this domain

- Collective Intelligence: aggregating knowledge shared by many virtual agents

- Genetic algorithms: to evolve a population of virtual agents by selection

- Usual Learning Machine: definition.

- Types of tasks: supervised learning, unsupervised learning, reinforcement learning

- Types of actions: classification, regression, clustering, density estimation, reduction of

dimensionality

- Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

- Machine learning VS Deep Learning: problems on which Machine Learning remains

Today the state of the art (Random Forests & XGBoosts)

2. Basic Concepts of a Neural Network (Application: multi-layer perceptron)

- Reminder of mathematical bases.

- Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

- Definition of the learning of a network of neurons: functions of cost, back-propagation,

Stochastic gradient descent, maximum likelihood.

- Modeling of a neural network: modeling input and output data according to

The type of problem (regression, classification ...). Curse of dimensionality. Distinction between

Multi-feature data and signal. Choice of a cost function according to the data.

- Approximation of a function by a network of neurons: presentation and examples

- Approximation of a distribution by a network of neurons: presentation and examples

- Data Augmentation: how to balance a dataset

- Generalization of the results of a network of neurons.

- Initialization and regularization of a neural network: L1 / L2 regularization, Batch

Normalization ...

- Optimization and convergence algorithms.

3. Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

- Data management tools: Apache Spark, Apache Hadoop

- Tools Machine Learning: Numpy, Scipy, Sci-kit

- DL high level frameworks: PyTorch, Keras, Lasagne

- Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Day 2 - Convolutional and Recurrent Networks
4. Convolutional Neural Networks (CNN).

- Presentation of the CNNs: fundamental principles and applications

- Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and

3D.

- Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of

Innovations brought about by each architecture and their more global applications (Convolution

1x1 or residual connections)

- Use of an attention model.

- Application to a common classification case (text or image)

- CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

5. Recurrent Neural Networks (RNN).

- Presentation of RNNs: fundamental principles and applications.

- Basic operation of the RNN: hidden activation, back propagation through time,

Unfolded version.

- Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

- Convergence and vanising gradient problems

- Classical architectures: Prediction of a temporal series, classification ...

- RNN Encoder Decoder type architecture. Use of an attention model.

- NLP applications: word / character encoding, translation.

- Video Applications: prediction of the next generated image of a video sequence.

Day 3 - Generational Models and Reinforcement Learning
6. Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

- Presentation of the generational models, link with the CNNs seen in day 2

- Auto-encoder: reduction of dimensionality and limited generation

- Variational Auto-encoder: generational model and approximation of the distribution of a

given. Definition and use of latent space. Reparameterization trick. Applications and

Limits observed

- Generative Adversarial Networks: Fundamentals. Dual Network Architecture

(Generator and discriminator) with alternate learning, cost functions available.

- Convergence of a GAN and difficulties encountered.

- Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

- Applications for the generation of images or photographs, text generation, super-
resolution.

7. Deep Reinforcement Learning.

- Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

- Use of a neural network to approximate the state function

- Deep Q Learning: experience replay, and application to the control of a video game.

- Optimization of learning policy. On-policy && off-policy. Actor critic

architecture. A3C.

- Applications: control of a single video game or a digital system.

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲午夜免费视频| 日韩一级黄色大片| 欧美成人高清视频| 亚洲精品视频啊美女在线直播| 欧美精品一区三区在线观看| 一本大道久久a久久综合婷婷| 国产精品成人国产乱一区| 欧美一站二站| 亚洲精品日日夜夜| 国产欧美日韩一级| 欧美精品www在线观看| 亚洲欧美视频在线观看| 亚洲国产精品毛片| 国产精品欧美经典| 美女网站在线免费欧美精品| 亚洲国产婷婷香蕉久久久久久| 欧美成人精品福利| 欧美一级网站| 91久久精品网| 国产久一道中文一区| 欧美成人情趣视频| 欧美一级大片在线免费观看| 亚洲精品无人区| 国产日韩成人精品| 欧美日韩成人免费| 久久精品国产亚洲aⅴ| 一级日韩一区在线观看| 狠狠爱成人网| 国产欧美日韩中文字幕在线| 欧美日韩成人在线视频| 久久天堂av综合合色| 亚洲综合日韩中文字幕v在线| 在线观看成人一级片| 国产精品亚洲一区| 欧美aa国产视频| 国产日韩精品一区二区三区| 老司机久久99久久精品播放免费 | 亚洲精品日韩在线观看| 国产欧美视频在线观看| 欧美国产视频在线| 欧美在线免费看| 亚洲视频中文字幕| 亚洲国产欧美不卡在线观看 | 欧美大片在线影院| 欧美一区日本一区韩国一区| 中日韩男男gay无套| 亚洲精品中文字幕有码专区| 亚洲第一免费播放区| 亚洲第一精品在线| 国产精品视频九色porn| 欧美色道久久88综合亚洲精品| 欧美国产精品劲爆| 欧美激情一区二区三区 | 久久影音先锋| 久久亚洲捆绑美女| 久久久久欧美| 久久久久久综合| 久久婷婷人人澡人人喊人人爽 | 免费不卡亚洲欧美| 久久亚洲视频| 久久久午夜视频| 久久久噜噜噜久噜久久| 久久嫩草精品久久久精品一| 久久精品在线免费观看| 久久久国产午夜精品| 久久久久久日产精品| 玖玖视频精品| 欧美高清hd18日本| 欧美精品电影在线| 欧美日韩国产一中文字不卡| 欧美日韩一区二区在线 | 欧美日本免费一区二区三区| 欧美日本精品| 国产精品久久久久毛片大屁完整版| 国产精品国产三级国产专区53| 国产精品v欧美精品v日韩精品| 国产精品免费网站| 国产一区再线| 亚洲欧洲在线播放| 一区二区三区高清不卡| 中文精品视频一区二区在线观看| 亚洲综合不卡| 久久精品道一区二区三区| 久久久久国产精品www| 欧美电影在线免费观看网站| 欧美日韩不卡在线| 国产欧美日韩免费看aⅴ视频| 国模大胆一区二区三区| 亚洲精品国产精品国自产在线 | 国产精品久久久久久久app| 国产精品扒开腿做爽爽爽视频| 国产精品一区二区欧美| 精品不卡视频| 亚洲日韩成人| 亚洲一级影院| 久久性天堂网| 欧美午夜精品久久久久久久| 国产亚洲精品aa午夜观看| 亚洲高清中文字幕| 亚洲女爱视频在线| 麻豆精品精品国产自在97香蕉| 欧美日韩一区二区三区四区在线观看 | 欧美成人午夜免费视在线看片| 欧美女同在线视频| 国产欧美日韩亚洲| 亚洲精品网址在线观看| 欧美一区二区精品久久911| 玖玖国产精品视频| 国产精品久久久久影院亚瑟| 在线观看三级视频欧美| 亚洲香蕉在线观看| 免费试看一区| 国产精品入口66mio| 亚洲国产精品日韩| 午夜精品久久久久久久久久久久久 | 伊人天天综合| 亚洲女人天堂av| 牛人盗摄一区二区三区视频| 国产欧美va欧美不卡在线| 日韩一级大片在线| 久久免费99精品久久久久久| 国产精品高潮在线| 亚洲精品免费一区二区三区| 性欧美大战久久久久久久久| 欧美日韩午夜精品| 在线欧美小视频| 欧美一区二区高清| 欧美日韩在线电影| 亚洲国产日韩欧美在线99| 欧美在线视频观看| 欧美无砖砖区免费| 亚洲精品日韩一| 免费成人av资源网| 国产日韩精品一区| 亚洲欧美国产制服动漫| 欧美区一区二| 亚洲欧洲一区| 欧美成人激情视频| 亚洲国产精品久久久| 久久免费少妇高潮久久精品99| 国产精品一区久久久久| 亚洲一区欧美激情| 欧美精品电影在线| 亚洲黄色免费| 欧美高清视频在线观看| 精品动漫3d一区二区三区免费版| 亚洲欧美日本精品| 国产精品毛片| 亚洲调教视频在线观看| 欧美三级视频在线播放| 日韩一级免费| 欧美日韩一区二区三区视频 | 国产精品亚洲综合色区韩国| 夜夜爽夜夜爽精品视频| 欧美日韩在线精品一区二区三区| 亚洲伦理久久| 欧美三级电影精品| 亚洲午夜在线观看视频在线| 国产精品xnxxcom| 亚洲综合好骚| 国产日韩精品视频一区二区三区| 香港成人在线视频| 国产自产在线视频一区| 久久人人爽爽爽人久久久| 极品少妇一区二区| 欧美成人精品在线视频| 99精品99久久久久久宅男| 欧美午夜三级| 欧美一区二区三区久久精品茉莉花 | 国产一区二区三区在线观看免费 | 欧美激情视频一区二区三区免费 | 午夜一区二区三区在线观看| 国产日韩久久| 可以看av的网站久久看| 亚洲激情电影在线| 欧美日韩亚洲综合| 亚洲欧美国产精品专区久久| 国产精品尤物| 久久亚洲精品网站| 日韩一级二级三级| 国产午夜亚洲精品不卡| 开元免费观看欧美电视剧网站| 91久久久久| 国产精品久久网站| 久久精品国产77777蜜臀| 亚洲国产综合91精品麻豆| 欧美日本亚洲视频| 欧美一区二区三区喷汁尤物| 亚洲福利久久| 国产精品福利片| 久久婷婷国产综合国色天香| 亚洲精品日日夜夜| 国产色产综合产在线视频| 美女91精品| 亚洲永久精品大片| 亚洲电影免费观看高清完整版在线观看| 欧美美女bb生活片| 久久精品国产77777蜜臀| 亚洲精品国精品久久99热一| 国产精品实拍|