国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:為電信服務供應商的智能大數據信息業務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數據信息業務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲精品日韩在线观看| 另类专区欧美制服同性| 欧美大色视频| 狠狠色综合网站久久久久久久| av成人天堂| 欧美啪啪成人vr| 日韩一级在线| 欧美日韩国产在线观看| 亚洲美女一区| 欧美日本一区二区三区| 亚洲精品色婷婷福利天堂| 欧美电影在线观看| 亚洲人精品午夜| 欧美大色视频| 99精品欧美一区| 欧美三区美女| 一区二区国产日产| 欧美激情2020午夜免费观看| 亚洲成色777777在线观看影院| 久久九九全国免费精品观看| 韩国精品在线观看| 老司机免费视频一区二区| 国产综合欧美在线看| 欧美一级久久久久久久大片| 国产精品欧美一区二区三区奶水| 亚洲一区在线视频| 国产精品日韩高清| 久久九九热免费视频| 亚洲高清网站| 欧美精品久久久久久久久老牛影院| 日韩视频在线观看一区二区| 欧美四级电影网站| 久久精品国产2020观看福利| 亚洲高清视频在线观看| 欧美激情影音先锋| 欧美日韩免费观看中文| 精品福利av| 久久精品亚洲一区二区三区浴池| 欧美视频在线观看免费网址| 亚洲一区二区免费| 欧美激情黄色片| 亚洲日产国产精品| 欧美日韩一区二区三区在线看 | 夜夜嗨av一区二区三区网页| 亚洲三级影院| 夜夜嗨av一区二区三区网页| 亚洲影院污污.| 亚洲欧美日韩中文在线制服| 久久aⅴ乱码一区二区三区| 美女国产一区| 国产精品jizz在线观看美国| 国产欧美日韩视频一区二区| 伊大人香蕉综合8在线视| 99re国产精品| 欧美一区深夜视频| 欧美日韩精品二区第二页| 国产欧美在线| 亚洲作爱视频| 久热国产精品视频| 国产精品人人做人人爽| 狠狠色丁香久久婷婷综合_中| 亚洲精品美女在线观看| 久久激情五月丁香伊人| 欧美日韩国产丝袜另类| 国产一本一道久久香蕉| 亚洲第一区中文99精品| 亚洲欧美日韩国产一区二区| 久久精品久久99精品久久| 欧美日韩亚洲一区在线观看| 国产午夜精品一区二区三区欧美| 日韩视频久久| 免费亚洲一区二区| 国产精品你懂得| 亚洲国产91| 欧美亚洲综合在线| 欧美福利一区二区三区| 国产精品免费一区二区三区在线观看 | 欧美激情一区在线观看| 国产精品美女久久久久久免费| 国产日韩欧美自拍| 亚洲一区二区在线播放| 欧美美女bbbb| 亚洲人成网在线播放| 久久精品国产99国产精品澳门 | 一区二区三区导航| 欧美—级高清免费播放| 曰韩精品一区二区| 久久精品女人| 国产欧美日韩专区发布| 亚洲免费福利视频| 欧美精品日本| 亚洲高清一区二区三区| 久久手机精品视频| 极品少妇一区二区三区| 久久九九热re6这里有精品 | 亚洲自拍电影| 麻豆精品网站| 亚洲精品视频免费在线观看| 欧美精品久久99| 99riav1国产精品视频| 欧美日韩国产综合新一区| 99热精品在线观看| 国产精品久久久久9999| 亚洲欧美三级伦理| 国产综合色在线| 免费不卡欧美自拍视频| 亚洲精品久久久久久久久久久 | 亚洲欧洲日韩综合二区| 欧美日韩中文字幕日韩欧美| 亚洲色图综合久久| 国产日韩成人精品| 久久久精品免费视频| 在线观看91精品国产麻豆| 免费在线欧美黄色| 一区二区三区四区在线| 欧美午夜精品久久久久久孕妇| 夜夜嗨av色综合久久久综合网 | 亚洲精品国产系列| 麻豆精品视频| 一区二区三区 在线观看视| 国产精品一区二区久久精品| 久久久久久久久一区二区| 亚洲日产国产精品| 国产精品亚洲第一区在线暖暖韩国| 久久国产主播精品| 99国产精品久久久久久久| 国产色产综合色产在线视频| 欧美凹凸一区二区三区视频| 在线视频精品| 亚洲电影一级黄| 国产欧美欧洲在线观看| 欧美激情亚洲视频| 欧美专区福利在线| 在线一区视频| 在线日本高清免费不卡| 国产精品久久7| 美国成人直播| 亚洲欧美日韩国产综合在线 | 久久精品日产第一区二区| 日韩亚洲欧美精品| 激情欧美一区二区| 国产精品乱子久久久久| 欧美激情亚洲| 看欧美日韩国产| 午夜精品美女自拍福到在线| 国产亚洲观看| 欧美日韩一二三四五区| 久久久噜噜噜久久人人看| 一区二区三区www| 亚洲成人资源| 国精品一区二区三区| 欧美午夜视频在线观看| 亚洲人成在线影院| 国产欧美精品xxxx另类| 蜜臀av性久久久久蜜臀aⅴ| 午夜激情久久久| 久久蜜臀精品av| 午夜精品短视频| 99国内精品| 国产日韩亚洲| 国产精品欧美日韩久久| 欧美成人一区二区三区| 麻豆国产va免费精品高清在线| 亚洲午夜av在线| 亚洲国产合集| 亚洲激情社区| 亚洲精品少妇30p| 日韩一二三区视频| 夜夜夜久久久| 亚洲视频精品| 亚洲欧美影音先锋| 亚洲欧美久久久久一区二区三区| 亚洲在线一区二区三区| 亚洲在线播放| 久久精品国产亚洲5555| 久久漫画官网| 欧美二区视频| 欧美日韩在线精品| 国产精品蜜臀在线观看| 国产欧美日韩三区| 影音先锋国产精品| 亚洲日本乱码在线观看| 一区二区欧美国产| 香蕉久久夜色| 欧美1级日本1级| 欧美三区在线视频| 国产性做久久久久久| 一区二区在线观看视频在线观看 | 久久久久久久久久久久久9999| 久久在线免费| 欧美日韩在线播放三区| 国产农村妇女毛片精品久久莱园子| 国产一区二区三区自拍| 亚洲国产精品一区二区第四页av | 欧美劲爆第一页| 国产精品一区二区你懂的| 激情成人中文字幕| 亚洲美女av网站| 久久国产精品久久久久久久久久| 美女网站久久|