課程目錄:TensorFlow for Image Recognition培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

          TensorFlow for Image Recognition培訓(xùn)

 

 

 

Machine Learning and Recursive Neural Networks (RNN) basics

NN and RNN
Backpropagation
Long short-term memory (LSTM)
TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables
Feeding, Reading and Preloading TensorFlow Data
How to use TensorFlow infrastructure to train models at scale
Visualizing and Evaluating models with TensorBoard
TensorFlow Mechanics 101

Tutorial Files
Prepare the Data
Download
Inputs and Placeholders
Build the Graph
Inference
Loss
Training
Train the Model
The Graph
The Session
Train Loop
Evaluate the Model
Build the Eval Graph
Eval Output
Advanced Usage

Threading and Queues
Distributed TensorFlow
Writing Documentation and Sharing your Model
Customizing Data Readers
Using GPUs1
Manipulating TensorFlow Model Files
TensorFlow Serving

Introduction
Basic Serving Tutorial
Advanced Serving Tutorial
Serving Inception Model Tutorial
Convolutional Neural Networks

Overview
Goals
Highlights of the Tutorial
Model Architecture
Code Organization
CIFAR-10 Model
Model Inputs
Model Prediction
Model Training
Launching and Training the Model
Evaluating a Model
Training a Model Using Multiple GPU Cards1
Placing Variables and Operations on Devices
Launching and Training the Model on Multiple GPU cards
Deep Learning for MNIST

Setup
Load MNIST Data
Start TensorFlow InteractiveSession
Build a Softmax Regression Model
Placeholders
Variables
Predicted Class and Cost Function
Train the Model
Evaluate the Model
Build a Multilayer Convolutional Network
Weight Initialization
Convolution and Pooling
First Convolutional Layer
Second Convolutional Layer
Densely Connected Layer
Readout Layer
Train and Evaluate the Model
Image Recognition

Inception-v3
C++
Java
1 Topics related to the use of GPUs are not available as a part of a remote course. They can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs, with 64-bit Linux installed (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware.

国产精品婷婷午夜在线观看 | 一本一本久久A久久综合精品| 日韩精品在线一区二区| 在线精品自偷自拍无码中文 | 国产精品婷婷久青青原| 国产亚洲美女精品久久久| 日韩国产精品99久久久久久| 青青久久精品国产免费看| 亚洲精品日韩中文字幕久久久| 国产精品久久久香蕉| 久久99国产精品二区不卡| 国产精品亚洲综合天堂夜夜| 亚洲欧洲国产精品久久| 国内精品久久久久伊人av| 99在线精品国自产拍中文字幕| 久久久久亚洲精品影视| 国产精品香蕉成人网在线观看| 99国产精品久久| 国产伦精品一区三区视频| 亚洲精品高清久久| 欧亚精品卡一卡二卡三| 拍国产乱人伦偷精品视频| 国产精品亚洲AV三区| 精品香蕉在线观看免费| 98精品全国免费观看视频| 国产精品成人A区在线观看| 国产精品永久免费| 青草国产精品视频。| 国产精品理论电影| 精品国产亚洲一区二区三区在线观看| 国产三级精品三级在专区中文 | 国产AV国片精品有毛| 久久久久人妻一区精品果冻| 久久国产亚洲精品| 精品久久久久久久无码| 久久水蜜桃亚洲av无码精品麻豆| 黑人精品videos亚洲人| 精品久久久久久亚洲| 国内少妇人妻偷人精品xxx| 成人区精品一区二区不卡| 国产成人久久久精品二区三区 |