国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

          Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
免费欧美在线视频| 国产精品欧美一区二区三区奶水| 亚洲电影第三页| 欧美成人资源网| 久久国产精品久久久| 亚洲精品一区在线观看| 91久久精品国产91久久性色| 国产日韩av高清| 国产精品日韩精品欧美精品| 欧美精品二区三区四区免费看视频| 久久久久久久综合| 欧美在线日韩| 午夜精品在线看| 亚洲欧美日韩一区在线观看| 一区二区三区高清| 亚洲精选中文字幕| 亚洲精品乱码久久久久久蜜桃91| 在线观看国产精品淫| 国产在线精品一区二区夜色| 国产婷婷97碰碰久久人人蜜臀| 国产精品多人| 国产精品久久久99| 国产精品久久国产愉拍 | 亚洲精品影院在线观看| 影音先锋国产精品| 黑人巨大精品欧美一区二区小视频 | 亚洲欧洲在线一区| 亚洲欧洲精品一区二区三区不卡 | 欧美日韩视频一区二区三区| 欧美精品 国产精品| 欧美日韩国产综合久久| 欧美性大战久久久久久久| 国产精品成人观看视频国产奇米| 国产精品ⅴa在线观看h| 国产精品一区二区久久国产| 国产午夜精品全部视频在线播放 | 国产亚洲综合精品| 国内精品模特av私拍在线观看| 黄色国产精品| 亚洲激情视频在线播放| 一区二区三区高清| 性亚洲最疯狂xxxx高清| 久久亚洲一区| 欧美人妖另类| 国产伦精品一区二区三区照片91| 国产一区自拍视频| 亚洲精品久久久久久下一站| 亚洲一级影院| 欧美.www| 国产欧美日韩精品a在线观看| 精东粉嫩av免费一区二区三区| 亚洲三级影院| 欧美色欧美亚洲高清在线视频| 国产精品老牛| 亚洲电影自拍| 新67194成人永久网站| 免费亚洲网站| 国产精品一区二区在线观看网站| 一区二区三区在线免费视频 | 亚洲美女av黄| 欧美一区二区视频在线| 欧美裸体一区二区三区| 国产一区二区精品丝袜| 日韩一区二区精品葵司在线| 欧美中文在线免费| 国产精品v日韩精品| 亚洲高清av在线| 欧美一区综合| 欧美视频在线不卡| 亚洲人成在线观看一区二区| 欧美一级理论片| 欧美日韩精品系列| 亚洲激情黄色| 老牛嫩草一区二区三区日本| 国产精品最新自拍| 亚洲一区日韩| 欧美日韩精品三区| 亚洲精品视频在线观看网站| 久久婷婷国产麻豆91天堂| 国产伦精品一区二区三区视频孕妇 | 国产精品中文字幕在线观看| 亚洲精品久久久久久久久久久久久 | 这里只有精品视频| 欧美成人精品一区二区三区| 国外成人免费视频| 欧美日韩一区二区视频在线观看| 尤物99国产成人精品视频| 午夜精品亚洲一区二区三区嫩草| 欧美日韩国产精品一区| 亚洲人在线视频| 欧美88av| 亚洲国产高清在线观看视频| 久久久久久久999精品视频| 国产日韩综合一区二区性色av| 亚洲小视频在线观看| 国产精品劲爆视频| 小黄鸭精品aⅴ导航网站入口| 国产精品三区www17con| 亚洲永久视频| 国产精品亚洲第一区在线暖暖韩国| 在线视频精品一区| 国产精品日韩精品欧美精品| 午夜一区二区三区不卡视频| 国产欧美在线观看一区| 亚洲欧美日本伦理| 国产精品一级| 久久久久88色偷偷免费| 亚洲国产高清在线观看视频| 欧美福利电影在线观看| 日韩一级精品| 国产乱码精品| 久久综合激情| 日韩亚洲欧美一区二区三区| 国产精品久久久久久久7电影 | 欧美专区亚洲专区| 伊人久久综合| 欧美日韩极品在线观看一区| 亚洲一区二区在线免费观看| 国产欧美精品在线| 蜜臀a∨国产成人精品| 亚洲乱码一区二区| 国产美女精品一区二区三区| 久久只有精品| 国产精品99久久久久久人| 国产色综合天天综合网| 欧美岛国在线观看| 亚洲欧美在线x视频| 黄色日韩网站视频| 欧美视频中文在线看| 久久蜜桃av一区精品变态类天堂| 亚洲伦理在线免费看| 国产午夜亚洲精品理论片色戒| 蜜臀久久99精品久久久画质超高清| 一本色道久久99精品综合| 国产一区二区三区久久久久久久久 | 国产人久久人人人人爽| 欧美高清视频免费观看| 欧美中文在线观看| 亚洲天堂免费在线观看视频| 亚洲国产乱码最新视频| 国产欧美日韩精品a在线观看| 性欧美1819sex性高清| 亚洲人被黑人高潮完整版| 国产视频一区二区在线观看 | 亚洲最新在线| 亚洲成人影音| 国产一区视频在线看| 欧美日韩视频在线第一区| 老司机免费视频一区二区三区| 在线亚洲免费视频| 亚洲黄一区二区| 国产精一区二区三区| 欧美日韩国产一区精品一区| 久久久久久久一区二区三区| 午夜精品国产| 亚洲免费影视第一页| 亚洲视频一区二区免费在线观看| 亚洲黄色一区二区三区| 红桃视频一区| 狠狠操狠狠色综合网| 国产日韩欧美一区二区三区四区| 欧美三级黄美女| 欧美日韩亚洲一区二区三区四区| 欧美精品粉嫩高潮一区二区 | 亚洲小说春色综合另类电影| 一本色道久久88亚洲综合88| 亚洲黄色有码视频| 亚洲国产va精品久久久不卡综合| 黑人巨大精品欧美一区二区| 狠狠v欧美v日韩v亚洲ⅴ| 国产欧美日韩精品在线| 国产伦精品一区| 国产欧美精品一区二区三区介绍| 国产精品视区| 国产亚洲制服色| 国产综合久久久久久| 国内成+人亚洲| 尤物精品在线| 亚洲精品国产精品国自产观看浪潮| 伊人婷婷久久| 亚洲理伦在线| 午夜精品国产更新| 久久精品国产精品亚洲综合| 久久久福利视频| 久久综合亚州| 欧美经典一区二区| 欧美女同视频| 国产一区在线视频| 亚洲日本乱码在线观看| 中日韩美女免费视频网址在线观看| 99视频热这里只有精品免费| 亚洲一区二区三区精品在线观看 | 国产精品手机视频| 黄色综合网站| 亚洲日本视频| 午夜精品福利在线| 欧美黄污视频| 国产欧美一区二区精品性 | 欧美在线一二三四区| 久久另类ts人妖一区二区|