国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

          Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
欧美二区在线看| 一区二区不卡在线视频 午夜欧美不卡'| 国产精品久久国产精品99gif | 亚洲高清免费| 香港久久久电影| 欧美一区二区福利在线| 免费日韩精品中文字幕视频在线| 欧美日韩一区二区三区在线视频| 亚洲人成网站色ww在线| 农村妇女精品| 亚洲第一二三四五区| 久久久久久久97| 激情成人综合网| 午夜在线精品偷拍| 国产精品美女视频网站| 亚洲欧洲日韩综合二区| 免费欧美视频| 国产一区二区三区av电影| 午夜亚洲性色视频| 国产日韩欧美日韩| 久久久国产91| 亚洲国产精品专区久久| 欧美成人一品| 亚洲激情视频在线观看| 欧美日韩精品综合| 一区二区三区欧美激情| 欧美成人首页| 最新中文字幕亚洲| 久久久久久久国产| 一区在线视频| 欧美激情精品久久久久久蜜臀| 亚洲精品1234| 国产精品久久久一区麻豆最新章节| 亚洲一区二区黄| 韩国一区二区在线观看| 欧美黑人在线播放| 香港久久久电影| 在线成人av.com| 欧美日韩国产色视频| 欧美一二三区在线观看| 亚洲风情在线资源站| 欧美日韩亚洲一区三区| 欧美一区二区视频观看视频| 亚洲电影视频在线| 国产欧美日韩高清| 欧美极品在线视频| 久久成人精品| 亚洲视频狠狠| 亚洲欧洲精品一区二区三区不卡 | 蜜臀久久久99精品久久久久久| 亚洲精品五月天| 国产午夜精品理论片a级探花 | 亚洲国产成人午夜在线一区| 国产精品国产三级国产 | 国产亚洲精品aa午夜观看| 欧美成人午夜激情| 久久精品视频在线看| 日韩亚洲国产精品| 在线观看欧美成人| 国产一区二区三区免费观看| 欧美日韩三级| 欧美国产第一页| 久久艳片www.17c.com| 亚洲免费人成在线视频观看| 亚洲激情第一区| 在线看一区二区| 国产一区二区精品在线观看| 欧美日韩中文字幕在线视频| 男人的天堂亚洲在线| 欧美专区亚洲专区| 午夜一区在线| 亚洲欧美自拍偷拍| 亚洲午夜精品网| 99精品国产福利在线观看免费| 影院欧美亚洲| 永久555www成人免费| 国外成人在线视频| 国产一区二区精品丝袜| 国产三区精品| 国产欧美一区二区精品性色| 国产精品日日摸夜夜摸av| 欧美视频一区二| 欧美日韩国产成人在线免费| 欧美精品国产| 欧美午夜不卡在线观看免费| 欧美视频二区| 国产精品乱子久久久久| 国产精品老女人精品视频| 国产精品午夜在线观看| 国产精品入口尤物| 国产日产高清欧美一区二区三区| 国产欧美日韩视频一区二区三区| 国产欧美一区二区三区视频| 国产欧美精品xxxx另类| 国产一区二区精品在线观看| 国内久久婷婷综合| 亚洲欧洲日本国产| 亚洲一区高清| 久久久亚洲人| 欧美伦理91i| 国产精品一区二区久久国产| 精品av久久久久电影| 91久久精品一区二区三区| 日韩亚洲不卡在线| 宅男精品导航| 欧美一区二区三区在线观看| 亚洲免费av电影| 在线精品国产欧美| 国产三区二区一区久久| 亚洲国产一二三| 一区二区三区蜜桃网| 久久精品国产亚洲aⅴ| 欧美激情中文不卡| 国产啪精品视频| 亚洲激情电影在线| 欧美一区二区三区视频在线观看| 久久字幕精品一区| 欧美三级视频| 在线播放一区| 午夜精品亚洲一区二区三区嫩草| 欧美a级片网站| 国产精品影视天天线| 亚洲人成网站色ww在线| 亚洲综合日韩| 欧美片网站免费| 亚洲专区在线视频| 久久久亚洲欧洲日产国码αv| 久久这里只有| 欧美视频在线一区| 在线成人国产| 欧美在线观看网站| 欧美日韩精品一区二区三区| 欧美日韩另类视频| 欧美区二区三区| 欧美日韩一区国产| 在线日韩中文字幕| 香蕉免费一区二区三区在线观看| 欧美国产1区2区| 亚洲成人在线视频播放| 激情av一区| 一区二区在线免费观看| 日韩写真视频在线观看| 欧美一区二区三区男人的天堂 | 亚洲第一页在线| 妖精视频成人观看www| 久久久久久久精| 国产精品私房写真福利视频| 亚洲国产欧美另类丝袜| 亚洲一区免费看| 欧美激情影音先锋| 国产拍揄自揄精品视频麻豆| 亚洲国产精品久久久久婷婷884| 性xx色xx综合久久久xx| 欧美激情在线观看| 亚洲日本中文字幕区| 欧美1区2区| 国产一二精品视频| 欧美一区永久视频免费观看| 欧美mv日韩mv国产网站| 国一区二区在线观看| 久久久久久网址| 国产欧美日韩专区发布| 夜夜夜久久久| 国产精品免费网站| 欧美在线免费一级片| 欧美午夜激情视频| 亚洲永久在线观看| 欧美日产国产成人免费图片| 亚洲狼人综合| 米奇777超碰欧美日韩亚洲| 亚洲国产精选| 欧美日本视频在线| 9久草视频在线视频精品| 久热精品视频在线免费观看| 国语自产精品视频在线看8查询8| 亚洲国产你懂的| 久久亚洲综合网| 国产人成精品一区二区三| 一本色道88久久加勒比精品| 男女精品视频| 国产精品日韩在线一区| 亚洲高清视频一区| 久久一区二区三区超碰国产精品| 国产日韩精品一区二区| 亚洲日本电影在线| 欧美亚洲综合久久| 国产农村妇女毛片精品久久莱园子 | 欧美性做爰毛片| 在线欧美电影| 午夜精品久久久久久久| 欧美先锋影音| 91久久精品国产| 欧美第十八页| 亚洲线精品一区二区三区八戒| 狠狠综合久久| 久久久99久久精品女同性| 亚洲美女诱惑| 精品成人一区二区三区| 国产精品久久午夜| 欧美国产日韩精品|