国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:為電信服務(wù)供應(yīng)商的智能大數(shù)據(jù)信息業(yè)務(wù)培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

         為電信服務(wù)供應(yīng)商的智能大數(shù)據(jù)信息業(yè)務(wù)培訓(xùn)

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲一区二区三区中文字幕 | 一本色道久久88精品综合| 国产精品电影在线观看| 久久国产日韩| 亚洲香蕉视频| 亚洲精品少妇| 亚洲国产91精品在线观看| 国产三级精品在线不卡| 国产精品久久久久高潮| 欧美日韩国产三级| 欧美va亚洲va国产综合| 久久久久免费观看| 欧美在线一级视频| 午夜精品理论片| 亚洲综合成人婷婷小说| 亚洲视频图片小说| 中文一区在线| 一区二区三区日韩欧美| 99国产精品99久久久久久| 亚洲精品三级| 9l视频自拍蝌蚪9l视频成人| 最新国产の精品合集bt伙计| 亚洲精品一区二区三区99| 亚洲欧洲久久| 亚洲乱码国产乱码精品精天堂| 黄色日韩网站| 亚洲高清色综合| 亚洲精品乱码久久久久久按摩观 | 影视先锋久久| 亚洲片在线资源| 亚洲精品中文字幕女同| 一本久道久久综合狠狠爱| 亚洲一级片在线看| 欧美一级午夜免费电影| 久久精品日韩| 欧美www视频| 欧美色网在线| 国产日韩av在线播放| 韩国av一区二区| 亚洲夫妻自拍| 一区二区三区国产在线| 亚洲欧美日韩在线高清直播| 久久精品主播| 欧美日韩三级在线| 国产日韩欧美日韩大片| 亚洲国产欧美久久| 亚洲午夜视频在线| 久久久国产午夜精品| 欧美成人在线影院| 国产精品视频免费观看www| 好看的av在线不卡观看| 日韩午夜三级在线| 欧美一区二区三区免费看| 免费观看久久久4p| 国产精品美女久久久久av超清| 国产一区二区日韩| 日韩一级不卡| 久久久国产91| 国产精品久久福利| 亚洲国产激情| 欧美一区二区视频网站| 欧美日韩国产免费观看| 好吊视频一区二区三区四区| 一区二区三区日韩精品| 农村妇女精品| 国产在线播放一区二区三区| 99re热这里只有精品免费视频| 久久超碰97中文字幕| 欧美日韩一区二区免费视频| 在线免费精品视频| 欧美中文字幕在线| 国产精品美女午夜av| 99视频精品免费观看| 老鸭窝91久久精品色噜噜导演| 国产精品一二三| 亚洲最黄网站| 欧美高清视频一区| 亚洲国产精品黑人久久久| 欧美一区三区二区在线观看| 欧美午夜精品| 夜夜嗨av一区二区三区网页| 免费观看亚洲视频大全| 一区二区亚洲精品| 久久国产精品99国产| 国产视频综合在线| 午夜视频一区在线观看| 国产精品夜夜嗨| 亚洲免费在线电影| 国产精品捆绑调教| 亚洲一级影院| 国产九九精品视频| 欧美亚洲色图校园春色| 国产精品久久久久免费a∨| 亚洲一区二区三区视频| 国产精品红桃| 欧美一区二区大片| 狠狠色狠狠色综合日日91app| 久久精品国产精品亚洲| 海角社区69精品视频| 久久久99爱| 亚洲精美视频| 欧美色视频在线| 亚洲影院色在线观看免费| 国产精品一区二区欧美| 欧美在线你懂的| 一区二区在线视频| 欧美激情久久久久久| 国产精品99久久久久久久女警 | 国产精品美女主播| 久久本道综合色狠狠五月| 在线欧美一区| 欧美日本国产精品| 亚洲欧美成人在线| 在线不卡视频| 欧美体内she精视频在线观看| 亚洲欧美激情一区| 亚洲第一区在线观看| 欧美日韩三级在线| 久久久国产一区二区| 亚洲日本欧美日韩高观看| 欧美性一区二区| 久久视频在线视频| 亚洲午夜在线视频| 在线观看国产成人av片| 国产精品第一页第二页第三页| 欧美在线亚洲| 99热在线精品观看| 国产一区二区三区无遮挡| 欧美裸体一区二区三区| 欧美在线999| 亚洲九九爱视频| 国内精品久久久久久| 欧美三区视频| 免费成人av在线看| 欧美专区亚洲专区| 一本久道久久综合狠狠爱| 伊大人香蕉综合8在线视| 国产精品v一区二区三区| 免费亚洲婷婷| 欧美在线网址| 亚洲男人的天堂在线| 亚洲美女中出| 激情91久久| 国产色综合久久| 国产精品免费一区豆花| 欧美激情精品久久久久久蜜臀 | 久久夜色精品国产欧美乱极品| 99视频超级精品| 亚洲日本中文字幕区| 激情亚洲网站| 国产亚洲视频在线| 国产精品网站在线观看| 欧美午夜久久| 欧美日韩中文| 欧美日韩国产综合新一区| 欧美www在线| 久久伊人免费视频| 久久激情视频| 欧美一区二区三区在线免费观看| 亚洲一区二区三区涩| 亚洲视频在线观看| 在线一区视频| 亚洲砖区区免费| 亚洲欧美视频一区二区三区| 亚洲综合另类| 午夜欧美大片免费观看 | 亚洲综合色激情五月| 亚洲午夜国产一区99re久久| 一区二区三区高清| 亚洲午夜精品久久久久久app| 一本不卡影院| 亚洲深夜福利网站| 亚洲午夜免费视频| 午夜在线成人av| 久久av二区| 久久中文字幕一区| 欧美黄色网络| 欧美午夜久久久| 国产欧美日韩视频在线观看| 国产一区在线看| 在线日韩中文字幕| 日韩一级大片在线| 亚洲曰本av电影| 久久国产日韩| 欧美国产先锋| 国产精品人人爽人人做我的可爱| 国产日韩在线视频| 亚洲国产成人精品久久久国产成人一区 | 一区在线影院| 一区二区毛片| 久久国产夜色精品鲁鲁99| 欧美/亚洲一区| 欧美特黄一区| 黄色精品一区| 中文亚洲欧美| 久久久另类综合| 欧美三日本三级三级在线播放| 国产日韩精品一区观看| 亚洲激情六月丁香| 午夜精品久久久久久|